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Abstract— Trajectory prediction plays a crucial role in the
autonomous driving stack by enabling autonomous vehicles
to anticipate the motion of surrounding agents. Goal-based
prediction models have gained traction in recent years for
addressing the multimodal nature of future trajectories. Goal-
based prediction models simplify multimodal prediction by first
predicting 2D goal locations of agents and then predicting
trajectories conditioned on each goal. However, a single 2D goal
location serves as a weak inductive bias for predicting the whole
trajectory, often leading to poor map compliance, i.e., part of
the trajectory going off-road or breaking traffic rules. In this
paper, we improve upon goal-based prediction by proposing
the Path-based prediction (PBP) approach. PBP predicts a
discrete probability distribution over reference paths in the
HD map using the path features and predicts trajectories in
the path-relative Frenet frame. We applied the PBP trajectory
decoder on top of the HiVT scene encoder and report results
on the Argoverse dataset. Our experiments show that PBP
achieves competitive performance on the standard trajectory
prediction metrics, while significantly outperforming state-of-
the-art baselines in terms of map compliance.

I. INTRODUCTION

To safely navigate through traffic while offering passen-
gers a smooth ride, autonomous vehicles need the ability
to predict the trajectories of surrounding agents. There is
inherent uncertainty in predicting the future, making this
a challenging task. Agent trajectories tend to be highly
non-linear over long prediction horizons. Additionally, the
distribution of future trajectories is multimodal; in a given
scene an agent could have multiple plausible goals and could
take various paths to each goal.

In spite of these challenges, agent motion is not com-
pletely unconstrained. Vehicles tend to follow the direction
of motion ascribed to their lanes, make legal turns and lane
changes, and stop at stop signs and crosswalks. Bicyclists
tend to use the bike lane, and pedestrians tend to walk
along sidewalks and crosswalks. High-definition (HD) maps
of traffic scenes efficiently represent such constraints on
agent motion and have thus been a critical component of
autonomous driving datasets [1], [2], [3], [4], [5]. In fact,
it has been shown in many prior works [6], [7], [8], [9],
[10], [11], [12] that a key requirement of the trajectory
prediction task for a real-world autonomous driving system
is to predict map-compliant trajectories – trajectories that
don’t go off-road or violate traffic rules over long prediction
horizons. For example, incorrectly predicting a non-map-
compliant trajectory that encroaches into the oncoming traffic
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lane could cause the ego vehicle to brake hard or even make
dangerous maneuvers on the road. As a result, prediction
map compliance w.r.t. the provided HD map is central to
our proposed approach and experimental evaluation.

Prior works have leveraged HD maps for trajectory pre-
diction in two distinct ways. First, the HD map is often used
as an input to the model. Early works [13], [14], [15] use
rasterized HD maps and CNN encoders. More recent works
directly encode vectorized HD maps using PointNet encoders
[16], [17], graph neural networks [18] or transformer layers
[19], [20], [21], [22]. The map encoding is then used by a
multimodal prediction header to output K trajectories and
their probabilities. A drawback of multimodal prediction
headers is that they need to learn a complex one-to-many
mapping from the entire scene context to multiple future
trajectories, often leading to non-map-compliant predictions.

To address this shortcoming, a few recent works addi-
tionally use the HD map for goal-based prediction [23],
[24], [25], [26], [27]. Goal-based prediction models as-
sociate each mode of the trajectory distribution to a 2D
goal location sampled from the HD map. They predict a
discrete distribution over the sampled goals, and then predict
trajectories conditioned on each goal. This simplifies the
mapping learned by the prediction header, and also makes
each mode of the trajectory distribution more interpretable.
However, 2D goal locations serve as a weak inductive bias to
condition predictions, and may lead to imprecise trajectories
for each goal.

In this work, we seek to improve upon goal-based trajec-
tory prediction. We argue that reference paths rather than
2D goals are the appropriate HD map element to condition
predicted trajectories. We define reference paths as segments
of lane centerlines close to the agent of interest that the agent
may follow over the prediction horizon. We propose a novel
path classifier that predicts a discrete probability distribution
over the candidate reference paths and a trajectory comple-
tion module that predicts trajectories conditioned on each
path in the Frenet frame. Figure 1 shows an overview of our
approach. In particular, our approach has two key advantages
over goal-based prediction:

1) Path features instead of goal features: We predict
trajectories conditioned on feature descriptors of the
entire reference path instead of just 2D goal locations.
This is a more informative feature descriptor and
leads to more map-compliant trajectories over longer
prediction horizons compared to goal-based prediction.



Fig. 1: Overview of path-based prediction. Path-based prediction predicts trajectories conditioned on reference paths rather
than 2D goals. We sample reference paths using the lane network from HD maps, predict a discrete distribution over the
sampled paths, and predict future trajectories in the Frenet frame relative to the paths. Finally, we transform the trajectories
back to the Cartesian frame relative to the target agent to obtain multimodal predictions.

2) Prediction in the Frenet frame: The reference paths
allow us to predict trajectories in the Frenet frame
relative to the path. Compared to the Cartesian frame
with varying lane locations and curvatures, predictions
in the Frenet frame have much lower variance, which
leads to more map-compliant trajectories that better
generalize to novel scene layouts.

Our path-based trajectory decoder is modular by design
and could be used with any existing scene encoder such
as VectorNet [17], LaneGCN [18], Scene Transformer [19],
Wayformer [21], etc. Here, we build our decoder on top
of the recently proposed HiVT encoder [22] that achieved
competitive results on the Argoverse dataset [1] and has a
publicly available code base. Our results on the Argoverse
dataset show that our path-based decoder achieves competi-
tive performance in terms of the standard minADE, minFDE,
and miss rate metrics, while significantly outperforming the
HiVT baseline and goal-based prediction in terms of map
compliance metrics.

Our contributions can be summarized as follows:

• We propose a novel path-based trajectory prediction
(PBP) approach that improves upon traditional goal-
based prediction.

• We applied our PBP trajectory decoder on top of the
HiVT [22] scene encoder. The resulting model achieves
the best map compliance metric on the Argoverse
leaderboard while being competitive in terms of pre-
diction error metrics.

• We present extensive ablation studies comparing dif-
ferent trajectory decoder approaches on the Argoverse
validation set.

II. RELATED WORK

Map-compliant trajectory prediction: Leveraging the HD-
map and predicting map-compliant trajectories has been the
focus of a large number of works on trajectory prediction.
Several works have proposed novel HD map encoders [28],
[17], [18], [16], [19], [22], trajectory decoders conditioned
on HD maps [23], [24], [26], [27], [29], [30], [31], and

even novel metrics and auxiliary loss functions for map-
compliance [6], [7], [8], [9], [10], [11], [12]. In this work, we
propose a path-based prediction approach that significantly
improves prediction map compliance.
Goal-free multimodal prediction: The distribution of future
trajectories is multimodal due to unknown intents of agents.
Machine learning models for trajectory prediction thus need
to learn a one-to-many mapping from the HD map and past
states of agents, to multiple future trajectories. Prior work
has addressed this using two approaches. The first approach
is to implicitly learn the trajectory distribution using latent
variable models such as GANs [32], [33], [34], CVAEs [35],
[36], and normalizing flows [6], [37], where samples from
the model represent plausible future trajectories. The other
common approach is to use a multimodal regression header
that outputs a fixed number of trajectories along with their
probabilities [13], [18], [22], [19]. Such models are trained
using the winner takes all/variety loss [32]. Some recent
works [21], [38], [39], use DETR-like learned tokens [40]
to output K distinct trajectories.
Goal-based prediction: Goal-based prediction models [23],
[25], [26], [27], [24] partly address the above limitations
by associating each mode of the trajectory distribution to
a 2D goal in the HD map. TNT [23] samples a sparse set
of goals along lane centerlines. LaneRCNN [25] uses nodes
in a lane graph to predict goal locations. HOME [26] and
GoHOME [27] predict goal heatmaps along a grid and graph
representation of the HD map, and sample goal locations
to optimize for the minFDE or miss rate metrics. Finally,
DenseTNT [24] first predicts a dense goal heatmap along
lanes, before using a second learned model to sample goals
from the heatmap. We improve upon goal-based prediction
models by conditioning our predictions on reference paths in
the HD map rather than goals. Reference paths provide our
trajectory decoder with more informative feature descriptors
than 2D goal coordinates, and additionally allow us to predict
in the path-relative Frenet frame.
Frenet frame trajectory decoding: There are some existing
models that predict trajectories in path-relative Frenet frame,
such as GoalNet [31], DAC [41], and WIMP [42]. PBP
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Fig. 2: Model architecture: Our model consists of four key modules. The scene encoder encodes the agent history and
HD map information (Section III-C). The candidate path sampler samples candidate paths for each agent from the lane
graph (Section III-D). The path classifier predicts a discrete distribution over the reference paths (Section III-E). Finally, the
trajectory regressor decodes trajectory predictions in the path-relative Frenet frame conditioned on the paths (Section III-F).

has two key differences from those works. First, PBP has a
different definition of its reference paths from those works.
The reference paths in GoalNet, DAC, and WIMP are fixed-
lengthed paths in the lane level. To generate the reference
paths, GoalNet and DAC start from the agent’s current
position and search along the lane graph for a fixed distance.
Such reference paths only capture the agent’s high-level in-
tention (e.g., go straight or turn right) but do not capture other
uncertainties such as change of speed profiles. As a result,
GoalNet, DAC, and WIMP all predict M trajectory modes
within each reference path to achieve multimodal prediction.
On the other hand, PBP’s reference paths are sequences of
lane segments with variable lengths, and PBP relies entirely
on its path classification to achieve multimodal prediction
since a reference path can uniquely define a predictive
mode. To highlight the difference, PBP considers around
600 candidate reference paths per agent, while GoalNet and
DAC only consider less than three reference paths per agent.
Second, DAC [41] and WIMP [42] do not have a learned
path classification module to predict path probabilities or
a path classification loss as a training objective. DAC uses
a heuristic algorithm to rank paths based on the distance-
along-lane score and centerline-yaw score, and WIMP finds
only one single closest reference path for each agent using
a heuristic algorithm. On the other hand, PBP has a path
classification module that predicts the probability distribution
over all candidate paths.

PRIME [43] also predicts trajectories in the Frenet frame,
but it uses a model-based trajectory generator (a quartic poly-

nomial) to sample trajectories. In contrast, PBP’s trajectory
generator is entirely learned, allowing it to generate a variety
of motion profiles in the Frenet frame.

III. PBP: PATH-BASED PREDICTION

A. Problem statement
The objective of a trajectory prediction model is to forecast

the future trajectories of a set of agents in the scene, given
their past history positions and map context. We denote
the past history positions of an agent a by {P a}Past =
{P a

−T ′+1,P
a
−T ′+2, · · · ,P a

0 } where P a
t = (xa

t , y
a
t ) is a 2-

D coordinate position, and T ′ > 0 is the past history
length. The map context M is represented as a set of
discretized lane segments {lj}Lj=1 and their connections. The
prediction model is required to forecast the future state of
each agent {P a}Future = {P a

1 ,P
a
2 , · · · ,P a

T } over the time
horizon T > 0. In order to capture the uncertainties of the
agents’ future behaviors, the model will output K trajectory
predictions and their probabilities {pk}Kk=1 for each agent.

B. Overall architecture
The overall architecture of our PBP model is illustrated in

Figure 2, which consists of four main components. The scene
encoder generates agent and map embeddings from agent-
map and agent-agent interactions (Section III-C). The candi-
date path sampler samples the candidate paths from the map
for each agent (Section III-D). The path classifier predicts
the probability of each sampled path (Section III-E). Finally,
the trajectory regressor decodes trajectories conditioned on
the selected paths (Section III-F).



C. Scene encoding

The scene encoder module creates agent feature vectors
from the scene for each agent. In this work, we borrowed
the scene encoder module from the HiVT model [22], a
recently proposed trajectory prediction model that achieves
state-of-the-art performance on Argoverse. The HiVT scene
encoder represents each scene as a set of vectorized entities.
It uses this representation to encode the scene by hierarchical
aggregation of the spatial-temporal information. First, rota-
tional invariant local feature vectors are encoded for each
agent with a transformer module to aggregate neighboring
agents’ information as well as local map structure. Next,
global interactions between agents are aggregated into each
agent’s feature vector to capture the scene-level context. The
outputs of the encoder are the feature vectors for each agent
denoted by Fa.

D. Candidate sampling

The objective of the candidate sampling module is to
create a set of candidate reference paths for each agent
by traversing the lane graph. A reference path is de-
fined as a sequence of connected lane segments ri =
{li,1, li,2, · · · , li,Ri

}. The starting point of the reference path
for an agent a is supposed to be in the vicinity of the agent’s
current location P a

0 , and the endpoint is supposed to be in
the vicinity of the agent’s future trajectory endpoint P a

T , as
is illustrated in Figure 1.

To select the candidate reference path for an agent a, we
first select a set of seed lane segments that will be considered
as the path starting points. We used a simple heuristic to
select the seed lane segments by picking the lane segments
that are within a distance range of the agent’s current location
and have their lane directions within a range of the agent’s
current heading. By picking the seed lanes this way, we
will have candidate paths starting from not only the agent’s
current lane but also the neighbor lanes, which allows the
model to predict lane-changing trajectories.

From the seed lane segments, we run a breadth-first search
to find the candidate paths. The output of the candidate
sampling module is a set of candidate reference paths for
each agent, denoted as Ra = {rai }.

E. Path classification

Given the set of candidate reference paths, the path clas-
sification module predicts the probability distribution over
them using the agent and path features.

To encode the features Fp,i of a path ri =
{li,1, li,2, · · · , li,Ri

}, we pick the the start segment li,1, the
middle segment li,Ri//2, and the end segment li,Ri

of the
path, and use their coordinates and direction vectors as the
raw feature. We encode those raw features with an MLP to
a feature vector Fp.

In addition to the agent and path features, we also create an
agent-path pair feature that captures the interactions between
the agent and the path. We use the distance vectors and angle
deltas from the agent’s current location to the start, middle,
and end segments of the path as the raw features. We then

use another MLP network to encode them to an agent-path
pair feature vector Fa,(p,i)

We concatenate the agent feature Fa, path feature Fp,
and agent-path pair feature Fa,(p,i) together and run them
through another MLP network to predict the probability
distribution over all candidate paths of the agent, trained
with the cross-entropy loss as Lcls. We decide the ground-
truth reference path raGT of the agent a based on its ground-
truth future trajectory {P a}Future, similar to the ground-
truth goal selection in goal-based prediction. At inference
time, we use non-maximum suppression (NMS) to sample a
set of K diverse paths to decode the trajectory predictions.

F. Frenet frame trajectory decoding
The trajectory regressor module decodes trajectories con-

ditioned on the reference paths. One key difference between
our trajectory regressor and the one used in traditional goal-
based prediction [23], [25], [26], [27], [24] is that it has the
information of the whole reference path instead of just the
final goal endpoint. To leverage this path information, we
designed our trajectory regressor to decode trajectories in
the path-relative Frenet frame.

For each selected reference path rai , the trajectory regres-
sor predicts a trajectory in path-relative Frenet frame, with
longitudinal component {ŝat }t=1···T and lateral component
{d̂at }t=1···T , whose inputs include agent features Fa, path
features Fp,i, and agent history in Frenet frame P a

Past,rai
.

During training, we use a teacher-forcing technique and
train the trajectory regressor using the ground-truth reference
path raGT . We transform the ground-truth trajectory P a

Future

to the Frenet frame w.r.t. raGT , with longitudinal component
{sat }t=1···T and lateral component {dat }t=1···T .

The loss function is defined as smooth L1 losses of the
longitudinal and lateral components in the Frenet frame:

La
reg =

T∑
t=1

LL1(s
a
t , ŝ

a
t ) + λlateralLL1(d

a
t , d̂

a
t ) (1)

The total loss is a weighted sum of the path classification
loss and the trajectory regression loss over all agents:

Lpbp =
∑

a∈Agents

λclsLa
cls + La

reg (2)

After predicting the trajectories in the Frenet frame, we
transform them back to the Cartesian frame using the corre-
sponding reference path, using the formulas in [44].

G. Path-free prediction for non-map-compliant agents
In order to robustly handle non-map-compliant agents (i.e.,

agents whose behaviors are not compliant with the annotated
map), we additionally train a path-free trajectory decoder
with the same architecture as the original HiVT decoder [22].
We also train a binary classifier to select the predictions
between the two decoders for each agent. The path-free
decoder and its classifier share the same scene encoder as
the PBP decoder and use the agent feature vector Fa as the
input. During training, we label an agent as a path-free agent
if its ground-truth trajectory is more than 5 meters away from
any candidate reference path.



TABLE I: Decoder ablations on Argoverse validation set.

Decoder minFDE1 MR1 minFDE6 MR6
Offroad

rate
Lane
dev.

Multimodal regression 2.93 0.481 0.996 0.101 0.069 0.510
Anchor-based 2.93 0.491 1.019 0.096 0.068 0.503
Goal-based 2.82 0.488 1.095 0.107 0.008 0.386

PBP in Cartesian frame 2.84 0.479 1.048 0.099 0.005 0.389
PBP (Ours) 2.82 0.473 1.008 0.095 0.004 0.386

TABLE II: Comparison to the state-of-the-art models on the Argoverse leaderboard

Model minADE1 minFDE1 MR1 minADE6 minFDE6 MR6 DAC

TNT [23] 2.174 4.959 0.710 0.910 1.446 0.166 0.9889
DenseTNT [24] 1.679 3.632 0.584 0.882 1.282 0.126 0.9875
GoHOME [27] 1.689 3.647 0.572 0.943 1.450 0.105 0.9811
PRIME [43] 1.911 3.822 0.587 1.219 1.558 0.115 0.9898
HiVT-128 [22] 1.598 3.532 0.547 0.773 1.169 0.127 0.9888
MultiPath++ [38] 1.623 3.614 0.564 0.790 1.214 0.132 0.9876
DCMS [45] 1.477 3.251 0.532 0.766 1.135 0.109 0.9902
Wayformer [21] 1.636 3.656 0.572 0.767 1.162 0.119 0.9893
QCNet [46] 1.523 3.342 0.526 0.734 1.067 0.106 0.9887

PBP (Ours) 1.626 3.562 0.535 0.855 1.325 0.145 0.9930

IV. EXPERIMENTS

A. Dataset

We evaluate our model using the public Argoverse
dataset [1]. Argoverse includes track histories of agents
published at 10 Hz and vectorized HD maps. The task
involves predicting the future trajectory of a focal agent
in each scenario over a prediction horizon of 3 seconds,
conditioned on 2 seconds of track histories and the HD map
of the scene.

B. Implementation details

We implemented our path-based prediction decoder on top
of the open-source HiVT-64 scene encoder [22]. We followed
a similar training scheme as the original HiVT model for
PBP and its variants. We used 8 AWS T4 GPUs for model
training and evaluation. We trained each model for 64 epochs
with a batch size of 4 and the Adam optimizer with a learning
rate of 0.0005 and a decay weight of 0.0001.

C. Metrics

Best-of-K metrics: We report results using the standard met-
rics used for multimodal trajectory prediction: minADEK ,
minFDEK and miss rate (MRK). The standard metrics
compute prediction errors using the best of K predicted
trajectories, in order to not penalize diverse but plausible
modes predicted by the model. The minADEK metric aver-
ages the L2 norms of displacement errors between the ground
truth and the best mode over the prediction horizon. The
minFDEK metric computes the L2 norm of the displacement
error between the final predicted waypoint of the best mode
and the final waypoint in the ground truth. Finally, miss rate
computes the fraction of all predictions where none of the
K predicted trajectories are within 2 meters of the ground
truth. We report results for K=1 and K=6, following the
convention used in Argoverse.

Map compliance metrics: A key limitation of the standard
best-of-k metrics is that they fail to penalize implausible
predictions, even if they veer off-road or violate lane di-
rections. Ideally, we want all K predictions to be plausible
and map-compliant. Thus, we additionally report two map-
compliance metrics. Offroad rate measures the fraction of
the predicted waypoints at a given horizon falling outside the
drivable area. This is closely related to Argoverse’s drivable
area compliance (DAC) metric, but our offroad rate metric
measures each individual waypoint and can report map com-
pliance as a function of the prediction horizon as in Figure 3.
Lane deviation measures the L2 distance between a predicted
waypoint and the nearest lane centerline. It captures map
compliance signals even when the waypoint is inside the
drivable area. We report the two map-compliance metrics
averaged over all waypoints along the whole prediction
horizon and all K = 6 trajectories.

D. Decoder ablation study

We first perform a set of controlled experiments comparing
our PBP model with path classification and Frenet frame
trajectory decoder against the following alternative prediction
decoders.

• Multimodal regression: This is the original HiVT-64
model [22]. It directly regresses multimodal predictions
with the winner-takes-all loss.

• Anchor-based: This decoder is used in MultiPath [14]. It
predicts offsets with respect to fixed anchor trajectories.
We obtain the anchors using K-means clustering on the
train set.

• Goal-based: The goal-based prediction decoder [23],
[25], [24] uses only the goal endpoint features (no path
features) in its goal classification module and decodes
trajectories conditioned on goal endpoints (no Frenet
frame).
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Fig. 3: Offroad rate.

• PBP in Cartesian frame: This decoder performs path
classification as in PBP but decodes trajectories in the
Cartesian frame instead of the Frenet frame.

For fair comparisons, we implemented all decoders using
the same HiVT-64 encoder as PBP. The results are shown in
Table I, and we observe the following.

Significantly better map compliance. PBP and goal-based
prediction achieve significantly lower offroad rates and lane
deviation errors than multimodal regression and anchor-
based decoders. This effect is even more pronounced over
longer prediction horizons, as shown in Figure 3.
Advantage over goal-based prediction. Compared to goal-
based prediction, PBP achieves overall lower prediction er-
rors in terms of minFDE and MR and better map compliance
metrics, because of the usage of richer path features. From
Figure 3, goal-based prediction has strong map compliance
at the final waypoint (i.e., goal endpoint), but it has higher
offroad rates at the intermediate waypoints than PBP because
of the missing path information.
Slightly worse mode diversity than goal-free decoders.
PBP’s minFDE6 metric is slightly worse than the multimodal
regression baseline by 1%. This lower diversity is because
PBP’s predictions are constrained to lanes (as is shown
in Figure 4). We argue that it is a fair trade-off to have
more map-compliant predictions for real-world autonomous
driving applications.

E. Comparison against the state-of-the-art

We submitted our PBP model to the Argoverse leader-
board. Table II reports our results along with the top entries
on the leaderboard. Our model achieves the highest drivable
area compliance (DAC) on the leaderboard, outperforming
state-of-the-art in terms of map compliance, while being
competitive in terms of minADE1, minFDE1, and MR1.
Those results are consistent with our ablation study results
on the validation set. PBP’s top-6 metrics are slightly worse
than the top leaderboard submissions, but note that most of
them used extensive model ensembling (e.g., [21], [38], [46],
[47], [45]), while our submission used only one single pair
of encoder and decoder. Our inference latency is 72.7 ms on
an AWS T4 GPU, with 43.0 ms on the scene encoder and
29.7 ms on the trajectory decoder.

(a) HiVT-64 (b) PBP

Fig. 4: Qualitative comparison between original HiVT-64
and PBP. The first column shows the predictions from HiVT-
64, and the second column shows the predictions from PBP.
The blue, green, and red lines represent past history, ground-
truth, and top-6 prediction trajectories, respectively.

F. Qualitative examples

Figure 4 shows a few qualitative comparisons between the
HiVT-64 baseline (using multimodal regression) and PBP.
The results show PBP predicts map-compliant trajectories
from all modes, while HiVT-64 has many offroad predic-
tions. The example on the last row shows that PBP is able
to correctly predict lane-changing trajectories because the
path candidates also contain paths on the neighbor lanes.

V. CONCLUSION

In this paper, we propose PBP, a novel path-based pre-
diction approach. In contrast to the traditional goal-based
prediction approaches, PBP performs classification on the
whole reference path instead of just the goal endpoint.
The additional reference path information improves the path
classification accuracy and allows PBP to decode trajectories
in the path-relative Frenet frame. Evaluation results show
that the path-based prediction approach makes the trajectory
predictions significantly more map-compliant compared to
the traditional multimodal regression and goal-based pre-
diction approaches, while maintaining competitive or better
prediction accuracy.



REFERENCES

[1] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, et al., “Argoverse: 3d
tracking and forecasting with rich maps,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 8748–8757.

[2] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11 621–11 631.

[3] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan,
Y. Chai, B. Sapp, C. R. Qi, Y. Zhou, et al., “Large scale interactive
motion forecasting for autonomous driving: The waymo open motion
dataset,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 9710–9719.

[4] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal,
B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, et al., “Argoverse 2:
Next generation datasets for self-driving perception and forecasting,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021.

[5] H. Caesar, J. Kabzan, K. S. Tan, W. K. Fong, E. Wolff, A. Lang,
L. Fletcher, O. Beijbom, and S. Omari, “nuplan: A closed-loop ml-
based planning benchmark for autonomous vehicles,” arXiv preprint
arXiv:2106.11810, 2021.

[6] N. Rhinehart, K. M. Kitani, and P. Vernaza, “R2p2: A reparameterized
pushforward policy for diverse, precise generative path forecasting,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 772–788.

[7] M. Niedoba, H. Cui, K. Luo, D. Hegde, F.-C. Chou, and N. Djuric,
“Improving movement prediction of traffic actors using off-road
loss and bias mitigation,” in Workshop on’Machine Learning for
Autonomous Driving’at Conference on Neural Information Processing
Systems, 2019.

[8] F. A. Boulton, E. C. Grigore, and E. M. Wolff, “Motion prediction us-
ing trajectory sets and self-driving domain knowledge,” arXiv preprint
arXiv:2006.04767, 2020.

[9] H. Cui, H. Shajari, S. Yalamanchi, and N. Djuric, “Ellipse loss
for scene-compliant motion prediction,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
8558–8564.

[10] D. Ridel, N. Deo, D. Wolf, and M. Trivedi, “Scene compliant trajectory
forecast with agent-centric spatio-temporal grids,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2816–2823, 2020.

[11] R. Greer, N. Deo, and M. Trivedi, “Trajectory prediction in au-
tonomous driving with a lane heading auxiliary loss,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 4907–4914, 2021.

[12] D. Zhu, M. Zahran, L. E. Li, and M. Elhoseiny, “Motion forecasting
with unlikelihood training in continuous space,” in Conference on
Robot Learning. PMLR, 2022, pp. 1003–1012.

[13] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K.
Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predic-
tions for autonomous driving using deep convolutional networks,” in
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 2090–2096.

[14] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple
probabilistic anchor trajectory hypotheses for behavior prediction,” in
Conference on Robot Learning (CoRL). PMLR, 2020, pp. 86–99.

[15] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M.
Wolff, “Covernet: Multimodal behavior prediction using trajectory
sets,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 14 074–14 083.

[16] M. Ye, T. Cao, and Q. Chen, “Tpcn: Temporal point cloud networks for
motion forecasting,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 11 318–11 327.

[17] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,
“Vectornet: Encoding hd maps and agent dynamics from vectorized
representation,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2020, pp. 11 525–11 533.

[18] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Ur-
tasun, “Learning lane graph representations for motion forecasting,”
in European Conference on Computer Vision. Springer, 2020, pp.
541–556.

[19] J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L. Chiang,
J. Ling, R. Roelofs, A. Bewley, C. Liu, A. Venugopal, et al., “Scene
transformer: A unified multi-task model for behavior prediction and
planning,” arXiv e-prints, pp. arXiv–2106, 2021.

[20] Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou, “Multimodal motion
prediction with stacked transformers,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
7577–7586.

[21] N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and
B. Sapp, “Wayformer: Motion forecasting via simple & efficient
attention networks,” arXiv preprint arXiv:2207.05844, 2022.

[22] Z. Zhou, L. Ye, J. Wang, K. Wu, and K. Lu, “Hivt: Hierarchical vector
transformer for multi-agent motion prediction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 8823–8833.

[23] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen,
Y. Shen, Y. Chai, C. Schmid, et al., “Tnt: Target-driven trajectory
prediction,” in Conference on Robot Learning. PMLR, 2021, pp.
895–904.

[24] J. Gu, C. Sun, and H. Zhao, “Densetnt: End-to-end trajectory pre-
diction from dense goal sets,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 15 303–
15 312.

[25] W. Zeng, M. Liang, R. Liao, and R. Urtasun, “Lanercnn: Dis-
tributed representations for graph-centric motion forecasting,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 532–539.

[26] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“Home: Heatmap output for future motion estimation,” in 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC).
IEEE, 2021, pp. 500–507.

[27] ——, “Gohome: Graph-oriented heatmap output for future motion
estimation,” in 2022 International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2022, pp. 9107–9114.

[28] N. Djuric, V. Radosavljevic, H. Cui, T. Nguyen, F.-C. Chou, T.-H.
Lin, N. Singh, and J. Schneider, “Uncertainty-aware short-term motion
prediction of traffic actors for autonomous driving,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision,
2020, pp. 2095–2104.

[29] J. Wang, T. Ye, Z. Gu, and J. Chen, “Ltp: Lane-based trajectory
prediction for autonomous driving,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
17 134–17 142.

[30] N. Deo, E. Wolff, and O. Beijbom, “Multimodal trajectory prediction
conditioned on lane-graph traversals,” in Conference on Robot Learn-
ing. PMLR, 2022, pp. 203–212.

[31] L. Zhang, P.-H. Su, J. Hoang, G. C. Haynes, and M. Marchetti-Bowick,
“Map-adaptive goal-based trajectory prediction,” in Conference on
Robot Learning. PMLR, 2021, pp. 1371–1383.

[32] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
gan: Socially acceptable trajectories with generative adversarial net-
works,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 2255–2264.

[33] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi,
and S. Savarese, “Sophie: An attentive gan for predicting paths
compliant to social and physical constraints,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 1349–1358.

[34] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang,
and Y. N. Wu, “Multi-agent tensor fusion for contextual trajectory
prediction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 126–12 134.

[35] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chan-
draker, “Desire: Distant future prediction in dynamic scenes with in-
teracting agents,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 336–345.

[36] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Dynamically-feasible trajectory forecasting with heteroge-
neous data,” in European Conference on Computer Vision. Springer,
2020, pp. 683–700.

[37] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog:
Prediction conditioned on goals in visual multi-agent settings,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 2821–2830.



[38] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti,
A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov, et al.,
“Multipath++: Efficient information fusion and trajectory aggregation
for behavior prediction,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 7814–7821.

[39] X. Wang, T. Su, F. Da, and X. Yang, “Prophnet: Efficient agent-centric
motion forecasting with anchor-informed proposals,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2023, pp. 21 995–22 003.

[40] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–
229.

[41] S. Narayanan, R. Moslemi, F. Pittaluga, B. Liu, and M. Chandraker,
“Divide-and-conquer for lane-aware diverse trajectory prediction,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 15 799–15 808.

[42] S. Khandelwal, W. Qi, J. Singh, A. Hartnett, and D. Ramanan,
“What-if motion prediction for autonomous driving,” arXiv preprint

arXiv:2008.10587, 2020.
[43] H. Song, D. Luan, W. Ding, M. Y. Wang, and Q. Chen, “Learning to

predict vehicle trajectories with model-based planning,” in Conference
on Robot Learning. PMLR, 2022, pp. 1035–1045.

[44] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” in 2010
IEEE International Conference on Robotics and Automation. IEEE,
2010, pp. 987–993.

[45] M. Ye, J. Xu, X. Xu, T. Cao, and Q. Chen, “Dcms: Motion forecasting
with dual consistency and multi-pseudo-target supervision,” arXiv
preprint arXiv:2204.05859, 2022.

[46] Z. Zhou, J. Wang, Y.-H. Li, and Y.-K. Huang, “Query-centric trajectory
prediction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 17 863–17 873.

[47] Y. Wang, H. Zhou, Z. Zhang, C. Feng, H. Lin, C. Gao, Y. Tang,
Z. Zhao, S. Zhang, J. Guo, et al., “Tenet: Transformer encoding
network for effective temporal flow on motion prediction,” arXiv
preprint arXiv:2207.00170, 2022.


